(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
subsets(Cons(x, xs)) → subsets[Ite][True][Let](Cons(x, xs), subsets(xs))
subsets(Nil) → Cons(Nil, Nil)
mapconsapp(x', Cons(x, xs), rest) → Cons(Cons(x', x), mapconsapp(x', xs, rest))
mapconsapp(x, Nil, rest) → rest
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
The (relative) TRS S consists of the following rules:
subsets[Ite][True][Let](Cons(x, xs), subs) → mapconsapp(x, subs, subs)
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
subsets(Cons(x, xs)) →+ subsets[Ite][True][Let](Cons(x, xs), subsets(xs))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [xs / Cons(x, xs)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)